کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6915576 1447402 2018 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A linear domain decomposition method for partially saturated flow in porous media
ترجمه فارسی عنوان
یک روش تجزیه دامنه خطی برای جریان بخشی از اشباع در رسانه متخلخل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
The Richards equation is a nonlinear parabolic equation that is commonly used for modelling saturated/unsaturated flow in porous media. We assume that the medium occupies a bounded Lipschitz domain partitioned into two disjoint subdomains separated by a fixed interface Γ. This leads to two problems defined on the subdomains which are coupled through conditions expressing flux and pressure continuity at Γ. After an Euler implicit discretisation of the resulting nonlinear subproblems, a linear iterative (L-type) domain decomposition scheme is proposed. The convergence of the scheme is proved rigorously. In the last part we present numerical results that are in line with the theoretical finding, in particular the convergence of the scheme under mild restrictions on the time step size. We further compare the scheme to other approaches not making use of a domain decomposition. Namely, we compare to a Newton and a Picard scheme. We show that the proposed scheme is more stable than the Newton scheme while remaining comparable in computational time, even if no parallelisation is being adopted. After presenting a parametric study that can be used to optimise the proposed scheme, we briefly discuss the effect of parallelisation and give an example of a four-domain implementation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 333, 1 May 2018, Pages 331-355
نویسندگان
, , , , ,