کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6916905 862957 2015 45 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An energy-barrier-based computational micro-sphere model for phase-transformations interacting with plasticity
ترجمه فارسی عنوان
یک مدل میکرو کره محاسباتی مبتنی بر مانع انرژی برای انتقال فاز با پلاستیک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We extend a newly introduced framework for the simulation of shape memory alloys undergoing martensite-austenite phase-transformations by allowing for the evolution of individual plastic deformations in each phase considered. The goal is to obtain a generalised model which will facilitate the reflection of the characteristic macroscopic behaviour of SMA as well as TRIP steels. Particularly, we show that the incorporation of plasticity effects interacting with phase-transformations allows to capture the typical multi-cyclic stress-strain responses. As a basis, we use a scalar-valued phase-transformation model where a Helmholtz free energy function depending on volumetric and deviatoric strain measures is assigned to each phase. The incorporation of plasticity phenomena is established by enhancing the deviatoric contributions of the Helmholtz free energy functions of the material phases considered, where the plastic driving forces acting in each phase are derived from the overall free energy potential of the mixture. The resulting energy landscape of the constitutive model is obtained from the contributions of the individual constituents, where the actual energy barriers are computed by minimising parametric intersection curves of elliptic paraboloids. With the energy barriers at hand, we use a statistical physics based approach to determine the resulting evolution of volume fractions due to acting thermo-mechanical loads. Though the model allows to take into account an arbitrary number of solid phases of the underlying material, we restrict the investigations to the simulation of phase-transformations between an austenitic parent phase and a martensitic tension and compression phase. The scalar-valued model is embedded into a computational micro-sphere formulation in order to simulate three-dimensional boundary value problems. The systems of evolution equations are solved in a staggered manner, where a newly proposed, physically motivated plasticity inheritance law accounts for the inheritance of plastic deformations due to evolving phases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 293, 15 August 2015, Pages 232-265
نویسندگان
, , ,