کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6917327 | 862949 | 2015 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, an efficient a priori model reduction strategy for frictional contact problems is presented. We propose to solve this problem by using the finite element method and the non-linear LATIN solver. Basically, this non-linear solver assumes a space-time separated representation presaging nowadays PGD strategies. We extend this family of solvers to frictional engineering applications with reduced subspaces and no prior knowledge about the solution (contrary to a posteriori model reduction techniques). Hereinafter, a hybrid a priori/a posteriori LATIN-PGD formulation for frictional contact problems is proposed. Indeed, the suggested algorithm may or may not start with an initial guess of the reduced basis and is able to enrich the basis in order to reach a given level of accuracy. Moreover, it provides progressively the solution of the considered problem into a quasi-optimal space-time separated form compared to the singular value decomposition (SVD). Some examples are provided in order to illustrate the efficiency and quasi-optimality of the proposed a priori reduced basis LATIN solver.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 283, 1 January 2015, Pages 1357-1381
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 283, 1 January 2015, Pages 1357-1381
نویسندگان
A. Giacoma, D. Dureisseix, A. Gravouil, M. Rochette,