کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6918697 | 862981 | 2012 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergent meshfree approximation schemes of arbitrary order and smoothness
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Local Maximum-Entropy (LME) approximation schemes are meshfree approximation schemes that satisfy consistency conditions of order one, i.e., they approximate affine functions exactly. In addition, LME approximation schemes converge in the Sobolev space W1,p, i.e., they are C0-continuous in the conventional terminology of finite-element interpolation. Here we present a generalization of the Local Max-Ent approximation schemes that are consistent to arbitrary order, i.e., interpolate polynomials of arbitrary degree exactly, and which converge in Wk,p, i.e., they are Ck-continuous to arbitrary order k. We refer to these approximation schemes as High Order Local Maximum-Entropy Approximation Schemes (HOLMES). We prove uniform error bounds for the HOLMES approximates and their derivatives up to order k. Moreover, we show that the HOLMES of order k is dense in the Sobolev space Wk,p, for any 1⩽p<â. The good performance of HOLMES relative to other meshfree schemes in selected test cases is also critically appraised.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volumes 221â222, 1 May 2012, Pages 83-103
Journal: Computer Methods in Applied Mechanics and Engineering - Volumes 221â222, 1 May 2012, Pages 83-103
نویسندگان
A. Bompadre, L.E. Perotti, C.J. Cyron, M. Ortiz,