کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6920236 1447879 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automated retinal nerve fiber layer defect detection using fundus imaging in glaucoma
ترجمه فارسی عنوان
تشخیص نقص لایه فیبر عصبی خودکار با استفاده از تصویر برداری فوندوس در گلوکوم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Retinal nerve fiber layer defect (RNFLD) provides an early objective evidence of structural changes in glaucoma. RNFLD detection is currently carried out using imaging modalities like OCT and GDx which are expensive for routine practice. In this regard, we propose a novel automatic method for RNFLD detection and angular width quantification using cost effective redfree fundus images to be practically useful for computer-assisted glaucoma risk assessment. After blood vessel inpainting and CLAHE based contrast enhancement, the initial boundary pixels are identified by local minima analysis of the 1-D intensity profiles on concentric circles. The true boundary pixels are classified using random forest trained by newly proposed cumulative zero count local binary pattern (CZC-LBP) and directional differential energy (DDE) along with Shannon, Tsallis entropy and intensity features. Finally, the RNFLD angular width is obtained by random sample consensus (RANSAC) line fitting on the detected set of boundary pixels. The proposed method is found to achieve high RNFLD detection performance on a newly created dataset with sensitivity (SN) of 0.7821 at 0.2727 false positives per image (FPI) and the area under curve (AUC) value is obtained as 0.8733.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computerized Medical Imaging and Graphics - Volume 66, June 2018, Pages 56-65
نویسندگان
, , , , ,