کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6920428 | 1447920 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Referenceless distortion correction of gradient-echo echo-planar imaging under inhomogeneous magnetic fields based on a deep convolutional neural network
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Single-shot gradient-echo echo-planar imaging (GE-EPI) plays a significant role in applications where high temporal resolution is necessary. However, GE-EPI is susceptible to inhomogeneous magnetic fields that will cause image distortion. Most existing methods either need additional acquisitions for field mapping or cannot correct the distortion at high field. Here, we propose a new algorithm based on a deep convolutional neural network (CNN) to solve this problem without additional acquisitions. The residual learning and the cascaded structure improved the performance of the CNN on distortion correction. A simulated dataset was used for training. The simulated and experimental results demonstrate that the proposed method can correct the image distortion caused by field inhomogeneity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 100, 1 September 2018, Pages 230-238
Journal: Computers in Biology and Medicine - Volume 100, 1 September 2018, Pages 230-238
نویسندگان
Pu Liao, Jun Zhang, Kun Zeng, Yonggui Yang, Shuhui Cai, Gang Guo, Congbo Cai,