کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6921331 | 864495 | 2015 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Representing and extracting lung cancer study metadata: Study objective and study design
ترجمه فارسی عنوان
معرفی و استخراج فراداده های تحقیق سرطان ریه: هدف مطالعه و طراحی مطالعه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
خلاصه خودکار کیفیت شواهد، بازیابی اطلاعات،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama׳s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F-scores compared to PubMed׳s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 58, 1 March 2015, Pages 63-72
Journal: Computers in Biology and Medicine - Volume 58, 1 March 2015, Pages 63-72
نویسندگان
Jean I. Garcia-Gathright, Andrea Oh, Phillip A. Abarca, Mary Han, William Sago, Marshall L. Spiegel, Brian Wolf, Edward B. Garon, Alex A.T. Bui, Denise R. Aberle,