کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6921597 864505 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Promoter recognition based on the maximum entropy hidden Markov model
ترجمه فارسی عنوان
شناخت سازنده بر اساس حداکثر آنتروپی مدل پنهان مارکوف
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Since the fast development of genome sequencing has produced large scale data, the current work uses the bioinformatics methods to recognize different gene regions, such as exon, intron and promoter, which play an important role in gene regulations. In this paper, we introduce a new method based on the maximum entropy Markov model (MEMM) to recognize the promoter, which utilizes the biological features of the promoter for the condition. However, it leads to a high false positive rate (FPR). In order to reduce the FPR, we provide another new method based on the maximum entropy hidden Markov model (ME-HMM) without the independence assumption, which could also accommodate the biological features effectively. To demonstrate the precision, the new methods are implemented by R language and the hidden Markov model (HMM) is introduced for comparison. The experimental results show that the new methods may not only overcome the shortcomings of HMM, but also have their own advantages. The results indicate that, MEMM is excellent for identifying the conserved signals, and ME-HMM can demonstrably improve the true positive rate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 51, 1 August 2014, Pages 73-81
نویسندگان
, , , , , , ,