کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6922067 | 1448265 | 2018 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A fast approach for unsupervised karst feature identification using GPU
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Among the geological features, karst is the one that has received special attention in oil and gas exploration for being a strong indicator of the potential existence of hydrocarbon reservoirs. The integration of automatic pattern recognition methods and Graphics Processing Units (GPU) provides a powerful tool to help geological interpretation of seismic data. In order to provide insightful information for interpreters, this work investigates the usage of GPUs in addition to image segmentation by means of unsupervised classification for the identification of karst features in 3D seismic data. For this purpose, an implementation of the robust Self-Organizing Map for GPUs (SOM/GPU) is provided, and a comparison against a Central Processing Unit (CPU)-based SOM (SOM/CPU) is performed to assess the speeding-up provided by GPU. Experiments have shown promising results for geological interpretation using seismic data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 119, October 2018, Pages 1-8
Journal: Computers & Geosciences - Volume 119, October 2018, Pages 1-8
نویسندگان
Luis C.S. Afonso, Mateus Basso, Michelle C. Kuroda, Alexandre C. Vidal, João P. Papa,