کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6928923 | 1449350 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Bassi Rebay 1 scheme is a special case of the Symmetric Interior Penalty formulation for discontinuous Galerkin discretisations with Gauss-Lobatto points
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In the discontinuous Galerkin (DG) community, several formulations have been proposed to solve PDEs involving second-order spatial derivatives (e.g. elliptic problems). In this paper, we show that, when the discretisation is restricted to the usage of Gauss-Lobatto points, there are important similarities between two common choices: the Bassi-Rebay 1 (BR1) method, and the Symmetric Interior Penalty (SIP) formulation. This equivalence enables the extrapolation of properties from one scheme to the other: a sharper estimation of the minimum penalty parameter for the SIP stability (compared to the more general estimate proposed by Shahbazi [1]), more efficient implementations of the BR1 scheme, and the compactness of the BR1 method for straight quadrilateral and hexahedral meshes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 363, 15 June 2018, Pages 1-10
Journal: Journal of Computational Physics - Volume 363, 15 June 2018, Pages 1-10
نویسندگان
Juan Manzanero, Andrés M. Rueda-RamÃrez, Gonzalo Rubio, Esteban Ferrer,