کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6929266 1449359 2018 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods
چکیده انگلیسی
In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O(p2d) storage and O(p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O(pd+1) storage, O(pd+1) work in two spatial dimensions, and O(pd+2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O(p9) to O(p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p=30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 354, 1 February 2018, Pages 344-369
نویسندگان
, ,