کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6929883 | 867531 | 2016 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A surrogate accelerated multicanonical Monte Carlo method for uncertainty quantification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work we consider a class of uncertainty quantification problems where the system performance or reliability is characterized by a scalar parameter y. The performance parameter y is random due to the presence of various sources of uncertainty in the system, and our goal is to estimate the probability density function (PDF) of y. We propose to use the multicanonical Monte Carlo (MMC) method, a special type of adaptive importance sampling algorithms, to compute the PDF of interest. Moreover, we develop an adaptive algorithm to construct local Gaussian process surrogates to further accelerate the MMC iterations. With numerical examples we demonstrate that the proposed method can achieve several orders of magnitudes of speedup over the standard Monte Carlo methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 321, 15 September 2016, Pages 1098-1109
Journal: Journal of Computational Physics - Volume 321, 15 September 2016, Pages 1098-1109
نویسندگان
Keyi Wu, Jinglai Li,