کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6931221 867553 2015 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Superconvergence property of an over-penalized discontinuous Galerkin finite element gradient recovery method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Superconvergence property of an over-penalized discontinuous Galerkin finite element gradient recovery method
چکیده انگلیسی
A polynomial preserving recovery method is introduced for over-penalized symmetric interior penalty discontinuous Galerkin solutions to a quasi-linear elliptic problem. As a post-processing method, the polynomial preserving recovery is superconvergent for the linear and quadratic elements under specified meshes in the regular and chevron patterns, as well as general meshes satisfying Condition(ϵ,σ). By means of the averaging technique, we prove the polynomial preserving recovery method for averaged solutions is superconvergent, satisfying similar estimates as those for conforming finite element methods. We deduce superconvergence of the recovered gradient directly from discontinuous solutions and naturally construct an a posteriori error estimator. Consequently, the a posteriori error estimator based on the recovered gradient is asymptotically exact. Extensive numerical results consistent with our analysis are presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 299, 15 October 2015, Pages 1004-1020
نویسندگان
, ,