کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6931421 867558 2015 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension
چکیده انگلیسی
We implement a high-order numerical scheme for the entropy-based moment closure, the so-called MN model, for linear kinetic equations in slab geometry. A discontinuous Galerkin (DG) scheme in space along with a strong-stability preserving Runge-Kutta time integrator is a natural choice to achieve a third-order scheme, but so far, the challenge for such a scheme in this context is the implementation of a linear scaling limiter when the numerical solution leaves the set of realizable moments (that is, those moments associated with a positive underlying distribution). The difficulty for such a limiter lies in the computation of the intersection of a ray with the set of realizable moments. We avoid this computation by using quadrature to generate a convex polytope which approximates this set. The half-space representation of this polytope is used to compute an approximation of the required intersection straightforwardly, and with this limiter in hand, the rest of the DG scheme is constructed using standard techniques. We consider the resulting numerical scheme on a new manufactured solution and standard benchmark problems for both traditional MN models and the so-called mixed-moment models. The manufactured solution allows us to observe the expected convergence rates and explore the effects of the regularization in the optimization.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 295, 15 August 2015, Pages 665-684
نویسندگان
, ,