کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6931963 | 867569 | 2015 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We develop a high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of one-sided variable-coefficient conservative fractional diffusion equations. The method has a proved high-order convergence rate of arbitrary order (i) without requiring the smoothness of the true solution u to the given boundary-value problem, but only assuming that the diffusivity coefficient and the right-hand source term have the desired regularity; (ii) for a variable diffusivity coefficient; and (iii) for an inhomogeneous Dirichlet boundary condition. Numerical experiments substantiate the theoretical analysis and show that the method exhibits exponential convergence provided the diffusivity coefficient and the right-hand source term have the desired regularity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 281, 15 January 2015, Pages 67-81
Journal: Journal of Computational Physics - Volume 281, 15 January 2015, Pages 67-81
نویسندگان
Hong Wang, Xuhao Zhang,