کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6932074 867569 2015 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems
چکیده انگلیسی
Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial control profiles far from optimal and require the numerical continuation technique applied on regularization parameters. We believe our solution strategy is general and can be applied to other large-scale optimal control problems which involve multiphysics processes and require smooth approximations to the optimal control profile.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 281, 15 January 2015, Pages 759-786
نویسندگان
, ,