کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6932269 | 867719 | 2014 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new Runge-Kutta discontinuous Galerkin method with conservation constraint to improve CFL condition for solving conservation laws
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [5], [6], [7], [8] for solving conservation laws with increased CFL numbers. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. Numerical computations for solving one-dimensional and two-dimensional scalar and systems of nonlinear hyperbolic conservation laws are performed with approximate solutions represented by piecewise quadratic and cubic polynomials, respectively. The hierarchical reconstruction [16], [32] is applied as a limiter to eliminate spurious oscillations in discontinuous solutions. From both numerical experiments and the analytic estimate of the CFL number of the newly formulated method, we find that: 1) this new formulation improves the CFL number over the original RKDG formulation by at least three times or more and thus reduces the overall computational cost; and 2) the new formulation essentially does not compromise the resolution of the numerical solutions of shock wave problems compared with ones computed by the RKDG method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 278, 1 December 2014, Pages 348-377
Journal: Journal of Computational Physics - Volume 278, 1 December 2014, Pages 348-377
نویسندگان
Zhiliang Xu, Xu-Yan Chen, Yingjie Liu,