کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6932304 867728 2014 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations
چکیده انگلیسی
The resolutions of interests in atmospheric simulations require prohibitively large computational resources. Adaptive mesh refinement (AMR) tries to mitigate this problem by putting high resolution in crucial areas of the domain. We investigate the performance of a tree-based AMR algorithm for the high order discontinuous Galerkin method on quadrilateral grids with non-conforming elements. We perform a detailed analysis of the cost of AMR by comparing this to uniform reference simulations of two standard atmospheric test cases: density current and rising thermal bubble. The analysis shows up to 15 times speed-up of the AMR simulations with the cost of mesh adaptation below 1% of the total runtime. We pay particular attention to the implicit-explicit (IMEX) time integration methods and show that the ARK2 method is more robust with respect to dynamically adapting meshes than BDF2. Preliminary analysis of preconditioning reveals that it can be an important factor in the AMR overhead. The compiler optimizations provide significant runtime reduction and positively affect the effectiveness of AMR allowing for speed-ups greater than it would follow from the simple performance model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 275, 15 October 2014, Pages 92-117
نویسندگان
, ,