کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6933905 | 867778 | 2013 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient energy-preserving integrators for oscillatory Hamiltonian systems
ترجمه فارسی عنوان
یکپارچه سازندگان انرژی کارآمد برای سیستم های نوک تیز همیلتون
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
In this paper, we focus our attention on deriving and analyzing an efficient energy-preserving formula for the system of nonlinear oscillatory or highly oscillatory second-order differential equations qâ³(t)+Mq(t)=fq(t), where M is a symmetric positive semi-definite matrix with Mâ«1 and f(q)=-âqU(q) is the negative gradient of a real-valued function U(q). This system is a Hamiltonian system with the Hamiltonian H(p,q)=12pTp+12qTMq+U(q). The energy-preserving formula exactly preserves the Hamiltonian. We analyze in detail the properties of the energy-preserving formula and propose new efficient energy-preserving integrators in the sense of numerical implementation. The convergence analysis of the fixed-point iteration is presented for the implicit integrators proposed in this paper. It is shown that the convergence of implicit Average Vector Field methods is dependent on M, whereas the convergence of the new energy-preserving integrators is independent of M. The Fermi-Pasta-Ulam problem and the sine-Gordon equation are carried out numerically to show the competence and efficiency of the novel integrators in comparison with the well-known Average Vector Field methods in the scientific literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 235, 15 February 2013, Pages 587-605
Journal: Journal of Computational Physics - Volume 235, 15 February 2013, Pages 587-605
نویسندگان
Xinyuan Wu, Bin Wang, Wei Shi,