کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6936389 868856 2016 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling railway disruption lengths with Copula Bayesian Networks
ترجمه فارسی عنوان
مدلسازی طول خرابی های راه آهن با شبکۀ بولیوی کوپولا
کلمات کلیدی
اختلال در راه آهن، پیش بینی، مدل وابستگی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Decreasing the uncertainty in the lengths of railway disruptions is a major help to disruption management. To assist the Dutch Operational Control Center Rail (OCCR) during disruptions, we propose the Copula Bayesian Network method to construct a disruption length prediction model. Computational efficiency and fast inference features make the method attractive for the OCCR's real-time decision making environment. The method considers the factors influencing the length of a disruption and models the dependence between them to produce a prediction. As an illustration, a model for track circuit (TC) disruptions in the Dutch railway network is presented in this paper. Factors influencing the TC disruption length are considered and a disruption length model is constructed. We show that the resulting model's prediction power is sound and discuss its real-life use and challenges to be tackled in practice.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part C: Emerging Technologies - Volume 68, July 2016, Pages 350-368
نویسندگان
, , ,