کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6936389 | 868856 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modeling railway disruption lengths with Copula Bayesian Networks
ترجمه فارسی عنوان
مدلسازی طول خرابی های راه آهن با شبکۀ بولیوی کوپولا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
اختلال در راه آهن، پیش بینی، مدل وابستگی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Decreasing the uncertainty in the lengths of railway disruptions is a major help to disruption management. To assist the Dutch Operational Control Center Rail (OCCR) during disruptions, we propose the Copula Bayesian Network method to construct a disruption length prediction model. Computational efficiency and fast inference features make the method attractive for the OCCR's real-time decision making environment. The method considers the factors influencing the length of a disruption and models the dependence between them to produce a prediction. As an illustration, a model for track circuit (TC) disruptions in the Dutch railway network is presented in this paper. Factors influencing the TC disruption length are considered and a disruption length model is constructed. We show that the resulting model's prediction power is sound and discuss its real-life use and challenges to be tackled in practice.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part C: Emerging Technologies - Volume 68, July 2016, Pages 350-368
Journal: Transportation Research Part C: Emerging Technologies - Volume 68, July 2016, Pages 350-368
نویسندگان
Aurelius A. Zilko, Dorota Kurowicka, Rob M.P. Goverde,