کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6936435 | 868856 | 2016 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Validating and improving public transport origin-destination estimation algorithm using smart card fare data
ترجمه فارسی عنوان
اعتبار سنجی و بهبود الگوریتم برآورد مقصد مبادلات حمل و نقل عمومی با استفاده از داده های کرایه کارت هوشمند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Smart card data are increasingly used for transit network planning, passengers' behaviour analysis and network demand forecasting. Public transport origin-destination (O-D) estimation is a significant product of processing smart card data. In recent years, various O-D estimation methods using the trip-chaining approach have attracted much attention from both researchers and practitioners. However, the validity of these estimation methods has not been extensively investigated. This is mainly because these datasets usually lack data about passengers' alighting, as passengers are often required to tap their smart cards only when boarding a public transport service. Thus, this paper has two main objectives. First, the paper reports on the implementation and validation of the existing O-D estimation method using the unique smart card dataset of the South-East Queensland public transport network which includes data on both boarding stops and alighting stops. Second, the paper improves the O-D estimation algorithm and empirically examines these improvements, relying on this unique dataset. The evaluation of the last destination assumption of the trip-chaining method shows a significant negative impact on the matching results of the differences between actual boarding/alighting times and the public transport schedules. The proposed changes to the algorithm improve the average distance between the actual and estimated alighting stops, as this distance is reduced from 806Â m using the original algorithm to 530Â m after applying the suggested improvements.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part C: Emerging Technologies - Volume 68, July 2016, Pages 490-506
Journal: Transportation Research Part C: Emerging Technologies - Volume 68, July 2016, Pages 490-506
نویسندگان
Azalden Alsger, Behrang Assemi, Mahmoud Mesbah, Luis Ferreira,