کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6937729 | 1449835 | 2018 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
TRISK: A local features extraction framework for texture-plus-depth content matching
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we present a new complete detector-descriptor framework for local features extraction from grayscale texture-plus-depth images. It is designed by putting together a locally normalized binary descriptor and the popular AGAST corner detector modified to incorporate the depth map into the keypoint detection process. With these new local features, we target image matching applications when significant out-of-plane rotations and viewpoint position changes are present in the input data. Our approach is designed to perform on RGBD images acquired with low-cost sensors such as Kinect without any complex depth map preprocessing such as denoising or inpainting. We show improved results with respect to several other highly competitive local image features through both a classic local feature evaluation procedure and an illustrative application scenario. Moreover, the proposed method requires low computational effort.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 71, March 2018, Pages 1-16
Journal: Image and Vision Computing - Volume 71, March 2018, Pages 1-16
نویسندگان
Maxim Karpushin, Giuseppe Valenzise, Frédéric Dufaux,