کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6938618 1449962 2019 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exploiting multiplex data relationships in Support Vector Machines
ترجمه فارسی عنوان
بهره برداری از روابط داده چندگانه در ماشین آلات بردار پشتیبانی
کلمات کلیدی
روابط داده چندگانه، پشتیبانی ماشین بردار تصحیح بر اساس نمودار، یادگیری چند هسته ای،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this paper, a novel method for introducing multiplex data relationships to the SVM optimization process is presented. Different properties about the training data are encoded in graph structures, in the form of pairwise data relationships. Then, they are incorporated to the SVM optimization problem, as modified graph-regularized basekernels, each highlighting a different property about the training data. The contribution of each graph-regularized kernel to the SVM classification problem, is estimated automatically. Thereby, the solution of the proposed modified SVM optimization problem lies in a regularized space, where data similarity is expressed by a linear combination of multiple single-graph regularized kernels. The proposed method exploits and extends the findings of Multiple Kernel Learning and graph-based SVM method families. It is shown that the available kernel options for the former can be broadened, and the exhaustive parameter tuning for the latter can be eliminated. Moreover, both method families can be considered as special cases of the proposed formulation, hereafter. Our experimental evaluation in visual data classification problems denote the superiority of the proposed method. The obtained classification performance gains can be explained by the exploitation of multiplex data relationships, during the classifier optimization process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 85, January 2019, Pages 70-77
نویسندگان
, , ,