کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6939762 | 870056 | 2017 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive maximum margin analysis for image recognition
ترجمه فارسی عنوان
تجزیه و تحلیل حداکثر حاشیه ای سازگاری برای تشخیص تصویر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
حداکثر حاشیه، کاهش ابعاد، نمایندگی انحصاری، تشخیص تصویر،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Most existing discriminant manifold learning methods aim to maximize the margin among nearby data, which is determined in the high-dimensional original space. As such, they do not necessarily best maximize the margin between different classes in the low-dimensional space, which is a critically important property for image classification. To handle this problem, we propose an adaptive maximum margin analysis (AMMA) for feature extraction. AMMA aims to seek a projection matrix that best maximize the margin, which is calculated in the low- dimensional space. It uses sparse representation to adaptively construct the intrinsic and penalty graphs. Finally, an iterative algorithm is developed to solve the projection matrix. Extensive experimental results on several image databases illustrate the effectiveness of the proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 61, January 2017, Pages 339-347
Journal: Pattern Recognition - Volume 61, January 2017, Pages 339-347
نویسندگان
Qianqian Wang, Lan Ma, Quanxue Gao, Yunsong Li, Yunfang Huang, Yang Liu,