کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6939907 | 870071 | 2016 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Can high-order dependencies improve mutual information based feature selection?
ترجمه فارسی عنوان
آیا وابستگی های بالا می تواند انتخاب ویژگی های متقابل اطلاعات را بهبود بخشد؟
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
انتخاب ویژگی، اطلاعات متقابل، وابستگی به درجه بالا،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Mutual information (MI) based approaches are a popular paradigm for feature selection. Most previous methods have made use of low-dimensional MI quantities that are only effective at detecting low-order dependencies between variables. Several works have considered the use of higher dimensional mutual information, but the theoretical underpinning of these approaches is not yet comprehensive. To fill this gap, in this paper, we systematically investigate the issues of employing high-order dependencies for mutual information based feature selection. We first identify a set of assumptions under which the original high-dimensional mutual information based criterion can be decomposed into a set of low-dimensional MI quantities. By relaxing these assumptions, we arrive at a principled approach for constructing higher dimensional MI based feature selection methods that takes into account higher order feature interactions. Our extensive experimental evaluation on real data sets provides concrete evidence that methodological inclusion of high-order dependencies improve MI based feature selection.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 53, May 2016, Pages 46-58
Journal: Pattern Recognition - Volume 53, May 2016, Pages 46-58
نویسندگان
Nguyen Xuan Vinh, Shuo Zhou, Jeffrey Chan, James Bailey,