کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6939932 | 870071 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mixture of grouped regressors and its application to visual mapping
ترجمه فارسی عنوان
ترکیبی از رگرسورهای گروهی و کاربرد آن در نقشه برداری بصری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Mixture of regressors (MoR) is a widely used regression approach for approximating nonlinear mappings between input and target outputs. However, existing learning procedures for MoR are prone to overfitting when only limited amounts of training data are available. To address this problem, we propose a new mixture regression model, named mixture of grouped regressors (MoGR). It partitions the individual regressors in the model into a set of groups, where the parameters of the regressors within each group are encouraged to take on similar values. As the parameters for each local regressor are learned using all data within a group, they tend to be better conditioned and more robust to noise in the training data. Extensive experiments on real-world head pose and gaze data demonstrate the benefits of our proposed MoGR model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 53, May 2016, Pages 184-194
Journal: Pattern Recognition - Volume 53, May 2016, Pages 184-194
نویسندگان
Lili Pan, Jason M. Saragih, Wen-Sheng Chu,