کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6939972 869886 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combination of global and local contexts for text/non-text classification in heterogeneous online handwritten documents
ترجمه فارسی عنوان
ترکیبی از زمینه های جهانی و محلی برای طبقه بندی متن / غیر متن در اسناد دست خط ناهمگن آنلاین
کلمات کلیدی
طبقه بندی متن / غیر متن، طبقه بندی سکته مغزی اسناد دستنویس آنلاین مدارک ناهمگن، شبکه عصبی مکرر، حافظه طولانی مدت،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
The task of text/non-text classification in online handwritten documents is crucially important to text recognition, text search, and diagram interpretation. It, however, is a challenging problem because of the large amount of variation and lack of prior knowledge. In order to solve this problem, we propose to use global and local contexts to build a high-performance classifier. The classifier assigns a text or non-text label to each stroke in a stroke sequence of a digital ink document. First, a neural network architecture is used to acquire the complete global context of the sequence of strokes. Then, a simple but effective model based on a marginal distribution is used for the local temporal context of adjacent strokes in order to improve the sequence labeling result. The results of experiments on available heterogeneous online handwritten document databases demonstrate the superiority and effectiveness of our context combination approach. Our method achieved classification rates of 99.04% and 98.30% on the Kondate (written in Japanese) and IAMonDo (written in English) heterogeneous document databases. These results are significantly better than others reported in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 51, March 2016, Pages 112-124
نویسندگان
, ,