کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940054 | 869737 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Local line directional pattern for palmprint recognition
ترجمه فارسی عنوان
الگوی هدایت خط محلی برای تشخیص دستمال کاغذی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Local binary patterns (LBP) are one of the most important image representations. However, LBPs have not been as successful as other methods in palmprint recognition. Originally, the LBP descriptor methods construct feature vectors in the image intensity space, using pixel intensity differences to encode a local representation of the image. Recently, similar feature descriptors have been proposed which operate in the gradient space instead of the image intensity space, such as local directional patterns (LDP) and local directional number patterns (LDN). In this paper, we propose a new feature input space and define an LBP-like descriptor that operates in the local line-geometry space, thus proposing a new image descriptor, local line directional patterns (LLDP). Moreover, the purpose of this work is to show that different implementations of LLDP descriptors perform competitively in palmprint recognition. We evaluate variations to LLDPs, e.g., the modified finite radon transform (MFRAT) and the real part of Gabor filters are exploited to extract robust directional palmprint features. As is well-known, palm lines are the essential features of a palmprint. We are able to show that the proposed LLDP descriptors are suitable for robust palmprint recognition. Finally, we present a thorough performance comparison among different LBP-like and LLDP image descriptors. Based on experimental results, the proposed feature encoding of LLDPs using directional indexing can achieve better recognition performance than that of bit strings in the Gabor-based implementation of LLDPs. We used four databases for performance comparisons: the Hong Kong Polytechnic University Palmprint Database II, the blue band of the Hong Kong Polytechnic University Multispectral Palmprint Database, the Cross-Sensor palmprint database, and the IIT Delhi touchless palmprint database. Overall, LLDP descriptors achieve a performance that is competitive or better than other LBP descriptors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 50, February 2016, Pages 26-44
Journal: Pattern Recognition - Volume 50, February 2016, Pages 26-44
نویسندگان
Yue-Tong Luo, Lan-Ying Zhao, Bob Zhang, Wei Jia, Feng Xue, Jing-Ting Lu, Yi-Hai Zhu, Bing-Qing Xu,