کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940097 | 1450007 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Directional statistical Gabor features for texture classification
ترجمه فارسی عنوان
ویژگی های گابور آماری جهت طبقه بندی بافت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
استخراج ویژگی، ساخت و ساز ویژگی ها، طبقه بندی بافت، فیلتر گابور آمار جابجایی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In texture classification, methods using multi-resolution directional (MRD) filters such as Gabor have not often shown significantly better performance than simple methods using local binary patterns, although they have a robust theoretical background and high computational complexity. We expect that this is because such methods usually make use of only the modulus parts of complex-valued MRD-filtered images and do not fully utilize their phase parts and other directional information. This letter presents a rotation-invariant feature using four types of directional statistics obtained from both the modulus and phase parts of Gabor-filtered images. First, modulus statistics, scale-shift cross-correlations, and orientation-shift cross-correlations are computed over all directions for each pixel of Gabor-filtered images, and global autocorrelations are computed over all pixels of each Gabor-filtered image. Global means and standard deviations for the three types of directional statistics and directional means and standard deviations for the global autocorrelations are then computed to form a feature vector. Experimental results with Brodatz, STex, CUReT, KTH-TIPS, UIUC, UMD, ALOT, and Kylberg databases show that the proposed method yields excellent performance compared with several conventional methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 112, 1 September 2018, Pages 18-26
Journal: Pattern Recognition Letters - Volume 112, 1 September 2018, Pages 18-26
نویسندگان
Nam Chul Kim, Hyun Joo So,