کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6940097 1450007 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Directional statistical Gabor features for texture classification
ترجمه فارسی عنوان
ویژگی های گابور آماری جهت طبقه بندی بافت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In texture classification, methods using multi-resolution directional (MRD) filters such as Gabor have not often shown significantly better performance than simple methods using local binary patterns, although they have a robust theoretical background and high computational complexity. We expect that this is because such methods usually make use of only the modulus parts of complex-valued MRD-filtered images and do not fully utilize their phase parts and other directional information. This letter presents a rotation-invariant feature using four types of directional statistics obtained from both the modulus and phase parts of Gabor-filtered images. First, modulus statistics, scale-shift cross-correlations, and orientation-shift cross-correlations are computed over all directions for each pixel of Gabor-filtered images, and global autocorrelations are computed over all pixels of each Gabor-filtered image. Global means and standard deviations for the three types of directional statistics and directional means and standard deviations for the global autocorrelations are then computed to form a feature vector. Experimental results with Brodatz, STex, CUReT, KTH-TIPS, UIUC, UMD, ALOT, and Kylberg databases show that the proposed method yields excellent performance compared with several conventional methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 112, 1 September 2018, Pages 18-26
نویسندگان
, ,