کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940131 | 1450007 | 2018 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
First Person Action Recognition via Two-stream ConvNet with Long-term Fusion Pooling
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
First person action recognition is an active research area with increasingly popular wearable devices. Action classification for first person video (FPV) is more challenging than conventional action classification due to strong egocentric motions, frequent changes of viewpoints, and diverse global motion patterns. To tackle these challenges, we introduce a two-stream convolutional neural network that improves action recognition via long-term fusion pooling operators. The proposed method effectively captures the temporal structure of actions by leveraging a series of frame-wise features of both appearance and motion in actions. Our experiments validate the effect of the feature pooling operators, and show that the proposed method achieves state-of-the-art performance on standard action datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 112, 1 September 2018, Pages 161-167
Journal: Pattern Recognition Letters - Volume 112, 1 September 2018, Pages 161-167
نویسندگان
Heeseung Kwon, Yeonho Kim, Jin S. Lee, Minsu Cho,