کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940190 | 1450008 | 2018 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Finding a set of candidate parents using dependency criterion for the K2 algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
One of the most effective structure-learning methods in a Bayesian network is the K2 algorithm. Because the performance of the K2 algorithm depends on the node ordering, more effective node ordering inference methods are needed. In this paper, we introduce a novel method for finding a set of candidate parents for each node as input for the K2 algorithm. Based on the fact that the candidate parents are identified by estimated Markov Blanket, we first estimate the Markov Blanket of a variable by using the L1-regularized Markov Blanket. We then determine the candidate parents of a variable through its Markov blanket by introducing a new scoring function based on the dependency criterion. Then the candidate parents are used as input for the K2 algorithm for learning Bayesian network structure. Experimental results over most of the datasets indicate that the proposed method avoids creating extra edges and significantly outperforms the previous methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 111, 1 August 2018, Pages 23-29
Journal: Pattern Recognition Letters - Volume 111, 1 August 2018, Pages 23-29
نویسندگان
Vahid Rezaei Tabar, Farzad Eskandari, Selva Salimi, Hamid Zareifard,