کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940675 | 1450017 | 2018 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Population-Contrastive-Divergence: Does consistency help with RBM training?
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Estimating the log-likelihood gradient with respect to the parameters of a Restricted Boltzmann Machine (RBM) typically requires sampling using Markov Chain Monte Carlo (MCMC) techniques. To save computation time, the Markov chains are only run for a small number of steps, which leads to a biased estimate. This bias can cause RBM training algorithms such as Contrastive Divergence (CD) learning to deteriorate. We adopt the idea behind Population Monte Carlo (PMC) methods to devise a new RBM training algorithm termed Population-Contrastive-Divergence (pop-CD). Compared to CD, it leads to a consistent estimate and may have a significantly lower bias. Its computational overhead is negligible compared to CD, but the variance of the gradient estimate increases. We experimentally show that pop-CD can significantly outperform CD. In many cases, we observed a smaller bias and achieved higher log-likelihood values. However, when the RBM distribution has many hidden neurons, the consistent estimate of pop-CD may still have a considerable bias and the variance of the gradient estimate requires a smaller learning rate. Thus, despite its superior theoretical properties, it is not advisable to use pop-CD in its current form on large problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 102, 15 January 2018, Pages 1-7
Journal: Pattern Recognition Letters - Volume 102, 15 January 2018, Pages 1-7
نویسندگان
Oswin Krause, Asja Fischer, Christian Igel,