کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6941243 870325 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parallel selective sampling method for imbalanced and large data classification
ترجمه فارسی عنوان
روش نمونه گیری موازی انتخابی برای طبقه بندی اطلاعات نامتجانس و بزرگ
کلمات کلیدی
یادگیری بی نظیر، طبقه بندی، ماشین بردار پشتیبانی، روش نمونه گیری انتخابی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Several applications aim to identify rare events from very large data sets. Classification algorithms may present great limitations on large data sets and show a performance degradation due to class imbalance. Many solutions have been presented in literature to deal with the problem of huge amount of data or imbalancing separately. In this paper we assessed the performances of a novel method, Parallel Selective Sampling (PSS), able to select data from the majority class to reduce imbalance in large data sets. PSS was combined with the Support Vector Machine (SVM) classification. PSS-SVM showed excellent performances on synthetic data sets, much better than SVM. Moreover, we showed that on real data sets PSS-SVM classifiers had performances slightly better than those of SVM and RUSBoost classifiers with reduced processing times. In fact, the proposed strategy was conceived and designed for parallel and distributed computing. In conclusion, PSS-SVM is a valuable alternative to SVM and RUSBoost for the problem of classification by huge and imbalanced data, due to its accurate statistical predictions and low computational complexity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 62, 1 September 2015, Pages 61-67
نویسندگان
, ,