کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6948406 1451039 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Academic paper recommender system using multilevel simultaneous citation networks
ترجمه فارسی عنوان
سیستم پیشنهاد دهنده مقاله علمی با استفاده از شبکه های استنادی چند سطحی
کلمات کلیدی
توصیهگر مقاله علمی، شبکه های استناد، سیستم توصیهگر، استخراج متن،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
چکیده انگلیسی
Researchers typically need to filter several academic papers to find those relevant to their research. This filtering is cumbersome and time-consuming because the number of published academic papers is growing exponentially. Some researchers have focused on developing better recommender systems for academic papers by using citation analysis and content analysis. Most traditional content analysis is implemented using a keyword matching process, and thus it cannot consider the semantic contexts of items. Further, citation analysis-based techniques rely on the number of links directly citing or being cited in a single-level network. Consequently, it may be difficult to recommend the appropriate papers when the paper of interest does not have enough citation information. To address these problems, we propose a recommendation system for academic papers that combines citation analysis and network analysis. The proposed method is based on multilevel citation networks that compare all the indirectly linked papers to the paper of interest to inspect the structural and semantic relationships among them. Thus, the proposed method tends to recommend informative and useful papers related to both the research topic and the academic theory. The comparison results based on real data showed that the proposed method outperformed the Google Scholar and SCOPUS algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Decision Support Systems - Volume 105, January 2018, Pages 24-33
نویسندگان
, ,