کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6949064 1451231 2018 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Deep fusion of multi-view and multimodal representation of ALS point cloud for 3D terrain scene recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
Deep fusion of multi-view and multimodal representation of ALS point cloud for 3D terrain scene recognition
چکیده انگلیسی
Terrain scene category is useful not only for some geographical or environmental researches, but also for choosing suitable algorithms or proper parameters of the algorithms for several point cloud processing tasks to achieve better performance. However, there are few studies in point cloud processing focusing on terrain scene classification at present. In this paper, a novel deep learning framework for 3D terrain scene recognition using 2D representation of sparse point cloud is proposed. The framework has two key components. (1) Initially, several suitable discriminative low-level local features are extracted from airborne laser scanning point cloud, and 3D terrain scene is encoded into multi-view and multimodal 2D representation. (2) A two-level fusion network embedded with feature- and decision-level fusion strategy is designed to fully exploit the 2D representation of 3D terrain scene, which can be trained end-to-end. Experiment results show that our method achieves an overall accuracy of 96.70% and a kappa coefficient of 0.96 in recognizing nine categories of terrain scene point clouds. Extensive design choices of the underlying framework are tested, and other typical methods from literature for related research are compared.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 143, September 2018, Pages 205-212
نویسندگان
, , ,