کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6949390 1451266 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximum margin metric learning based target detection for hyperspectral images
ترجمه فارسی عنوان
حداکثر اندازه گیری حاشیه برای یادگیری مبتنی بر یادگیری متریک برای تصاویر هیپرتراسترال
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
چکیده انگلیسی
Target detection is one of the most important problems in hyperspectral image (HSI) processing. However, the classical algorithms depend on the specific statistical hypothesis test, and the algorithms may only perform well under certain conditions, e.g., the adaptive matched subspace detector algorithm assumes that the background covariance matrices do not include the target signatures, which seldom happens in the real world. How to develop a proper metric for measuring the separability between targets and backgrounds becomes the key in target detection. This paper proposes an efficient maximum margin metric learning (MMML) based target detection algorithm, which aims at exploring the limited samples in metric learning and transfers the metric learning problem for hyperspectral target detection into a maximum margin problem which can be optimized via a cutting plane method, and maximally separates the target samples from the background ones. The extensive experimental results with different HSIs demonstrate that the proposed method outperforms both the state-of-the-art target detection algorithms and the other classical metric learning methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 108, October 2015, Pages 138-150
نویسندگان
, , , ,