کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6949547 1451276 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hybrid region merging method for segmentation of high-resolution remote sensing images
ترجمه فارسی عنوان
روش ادغام منطقه ترکیبی برای تقسیم تصاویر با حساسیت سنجی از راه دور با وضوح بالا
کلمات کلیدی
سنجش از دور با وضوح بالا، تقسیم بندی تصویر، ادغام منطقه، مدل نمودار، تجزیه و تحلیل تصویر مبتنی بر شی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
چکیده انگلیسی
Image segmentation remains a challenging problem for object-based image analysis. In this paper, a hybrid region merging (HRM) method is proposed to segment high-resolution remote sensing images. HRM integrates the advantages of global-oriented and local-oriented region merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region, which provides an elegant way to avoid the problem of starting point assignment and to enhance the optimization ability for local-oriented region merging. During the region growing procedure, the merging iterations are constrained within the local vicinity, so that the segmentation is accelerated and can reflect the local context, as compared with the global-oriented method. A set of high-resolution remote sensing images is used to test the effectiveness of the HRM method, and three region-based remote sensing image segmentation methods are adopted for comparison, including the hierarchical stepwise optimization (HSWO) method, the local-mutual best region merging (LMM) method, and the multiresolution segmentation (MRS) method embedded in eCognition Developer software. Both the supervised evaluation and visual assessment show that HRM performs better than HSWO and LMM by combining both their advantages. The segmentation results of HRM and MRS are visually comparable, but HRM can describe objects as single regions better than MRS, and the supervised and unsupervised evaluation results further prove the superiority of HRM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 98, December 2014, Pages 19-28
نویسندگان
, , , , ,