کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6952583 1451792 2018 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recursive state estimation based-on the outputs of partial nodes for discrete-time stochastic complex networks with switched topology
ترجمه فارسی عنوان
برآورد حالت بازگشتی بر مبنای خروجی گره های جزئی برای شبکه های پیچیده تصادفی با استفاده از توپولوژی سوئیچ
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
In this paper, the state estimation problem is studied for a class of discrete-time stochastic complex networks with switched topology. In the network under consideration, we assume that measurement outputs can be got from only partial nodes, besides, the switching rule of this network is characterized by a sequence of Bernoulli random variables. The aim of the presented estimation problem is to develop a recursive estimator based on the framework of extended Kalman filter (EKF), such that the upper bound for the filtering error convariance is optimized. In order to address the nonlinear functions, the Taylor series expansion is utilized and the high-order terms of linearization errors are expressed in an exact way. Furthermore, by solving two Ricatti-like difference equations, the gain matrix can be acquired at each time instant. It is shown that the filtering error is bounded in mean square under some conditions with the aid of stochastic analysis techniques. A numerical example is given to demonstrate the validity of the proposed estimator.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 355, Issue 11, July 2018, Pages 4686-4707
نویسندگان
, , ,