کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6952744 | 1451795 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sparse subspace clustering with jointly learning representation and affinity matrix
ترجمه فارسی عنوان
خوشهبندی زیربنایی انحصاری با نمایش مؤلفه یادگیری مشترک و ماتریس همبستگی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In recent years, sparse subspace clustering (SSC) has been witnessed to its advantages in subspace clustering field. Generally, the SSC first learns the representation matrix of data by self-expressive, and then constructs affinity matrix based on the obtained sparse representation. Finally, the clustering result is achieved by applying spectral clustering to the affinity matrix. As described above, the existing SSC algorithms often learn the sparse representation and affinity matrix in a separate way. As a result, it may not lead to the optimum clustering result because of the independence process. To this end, we proposed a novel clustering algorithm via learning representation and affinity matrix conjointly. By the proposed method, we can learn sparse representation and affinity matrix in a unified framework, where the procedure is conducted by using the graph regularizer derived from the affinity matrix. Experimental results show the proposed method achieves better clustering results compared to other subspace clustering approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 355, Issue 8, May 2018, Pages 3795-3811
Journal: Journal of the Franklin Institute - Volume 355, Issue 8, May 2018, Pages 3795-3811
نویسندگان
Ming Yin, Zongze Wu, Deyu Zeng, Panshuo Li, Shengli Xie,