کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6952871 | 1451799 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Kernel recursive generalized mixed norm algorithm
ترجمه فارسی عنوان
الگوریتم مخروط ترکیبی به طور کلی بازگشتی هسته است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
This work studies the problem of kernel adaptive filtering (KAF) for nonlinear signal processing under non-Gaussian noise environments. A new KAF algorithm, called kernel recursive generalized mixed norm (KRGMN), is derived by minimizing the generalized mixed norm (GMN) cost instead of the well-known mean square error (MSE). A single error norm such as lp error norm can be used as a cost function in KAF to deal with non-Gaussian noises but it may exhibit slow convergence speed and poor misadjustments in some situations. To improve the convergence performance, the GMN cost is formed as a convex mixture of lp and lq norms to increase the convergence rate and substantially reduce the steady-state errors. The proposed KRGMN algorithm can solve efficiently the problems such as nonlinear channel equalization and system identification in non-Gaussian noises. Simulation results confirm the desirable performance of the new algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 355, Issue 4, March 2018, Pages 1596-1613
Journal: Journal of the Franklin Institute - Volume 355, Issue 4, March 2018, Pages 1596-1613
نویسندگان
Ma Wentao, Qiu Xinyu, Duan Jiandong, Li Yingsong, Chen Badong,