کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6952871 1451799 2018 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kernel recursive generalized mixed norm algorithm
ترجمه فارسی عنوان
الگوریتم مخروط ترکیبی به طور کلی بازگشتی هسته است
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
This work studies the problem of kernel adaptive filtering (KAF) for nonlinear signal processing under non-Gaussian noise environments. A new KAF algorithm, called kernel recursive generalized mixed norm (KRGMN), is derived by minimizing the generalized mixed norm (GMN) cost instead of the well-known mean square error (MSE). A single error norm such as lp error norm can be used as a cost function in KAF to deal with non-Gaussian noises but it may exhibit slow convergence speed and poor misadjustments in some situations. To improve the convergence performance, the GMN cost is formed as a convex mixture of lp and lq norms to increase the convergence rate and substantially reduce the steady-state errors. The proposed KRGMN algorithm can solve efficiently the problems such as nonlinear channel equalization and system identification in non-Gaussian noises. Simulation results confirm the desirable performance of the new algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 355, Issue 4, March 2018, Pages 1596-1613
نویسندگان
, , , , ,