کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6952873 1451799 2018 43 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hierarchical linear dynamical systems for unsupervised musical note recognition
ترجمه فارسی عنوان
سیستم های دینامیکی خطی سلسله مراتبی برای شناخت نکته های موسیقی غیر قابل کنترل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
In this paper we develop a new framework for time series segmentation based on a Hierarchical Linear Dynamical System (HLDS), and test its performance on monophonic and polyphonic musical note recognition. The center piece of our approach is the inclusion of constraints in the filter topology, instead of on the cost function as normally done in machine learning. Just by slowing down the dynamics of the top layer of an augmented (multilayer) state model, which is still compatible with the recursive update equation proposed originally by Kalman, the system learns directly from data all the musical notes, without labels, effectively creating a time series clustering algorithm that does not require segmentation. We analyze the HLDS properties and show that it provides better classification accuracy compared to current state-of-the-art approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 355, Issue 4, March 2018, Pages 1638-1662
نویسندگان
, , ,