کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6952874 1451799 2018 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction model of permeability index for blast furnace based on the improved multi-layer extreme learning machine and wavelet transform
ترجمه فارسی عنوان
مدل پیش بینی شاخص نفوذپذیری برای کوره های انفجاری بر اساس دستگاه یادگیری پیشرفته چند لایه و تبدیل موجک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
The permeability index of the blast furnace is a significant symbol to measure the smooth operation of the blast furnace. This paper proposes a novel prediction model for permeability index of the blast furnace based on the multi-layer extreme learning machine (ML-ELM), the principal component analysis (PCA) method and wavelet transform (called as W-PCA-ML-ELM prediction model). This modified ML-ELM algorithm is based on the ML-ELM algorithm and the PCA method (named as PCA-ML-ELM). The PCA method is applied on the ML-ELM algorithm to improve the algebraic property of the last hidden layer output matrix which deteriorates its generalization performance due to the high multicollinearity. Because the production data of the blast furnace field contain noises, this paper applies the wavelet transform to remove the noise. Comparing with other prediction models which are based on the ML-ELM, the ELM, the BP and the SVM, simulation results illustrate that the better generalization performance and stability of the proposed W-PCA-ML-ELM prediction model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 355, Issue 4, March 2018, Pages 1663-1691
نویسندگان
, , , ,