کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6952884 | 1451799 | 2018 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bayesian network based extreme learning machine for subjectivity detection
ترجمه فارسی عنوان
سیستم یادگیری افراطی مبتنی بر شبکه بیزی برای شناسایی ذهنیت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
Subjectivity detection is a task of natural language processing that aims to remove 'factual' or 'neutral' content, i.e., objective text that does not contain any opinion, from online product reviews. Such a pre-processing step is crucial to increase the accuracy of sentiment analysis systems, as these are usually optimized for the binary classification task of distinguishing between positive and negative content. In this paper, we extend the extreme learning machine (ELM) paradigm to a novel framework that exploits the features of both Bayesian networks and fuzzy recurrent neural networks to perform subjectivity detection. In particular, Bayesian networks are used to build a network of connections among the hidden neurons of the conventional ELM configuration in order to capture dependencies in high-dimensional data. Next, a fuzzy recurrent neural network inherits the overall structure generated by the Bayesian networks to model temporal features in the predictor. Experimental results confirmed the ability of the proposed framework to deal with standard subjectivity detection problems and also proved its capacity to address portability across languages in translation tasks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 355, Issue 4, March 2018, Pages 1780-1797
Journal: Journal of the Franklin Institute - Volume 355, Issue 4, March 2018, Pages 1780-1797
نویسندگان
Iti Chaturvedi, Edoardo Ragusa, Paolo Gastaldo, Rodolfo Zunino, Erik Cambria,