کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6953004 | 1451802 | 2018 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Decentralized adaptive neural control for interconnected stochastic nonlinear delay-time systems with asymmetric saturation actuators and output constraints
ترجمه فارسی عنوان
کنترل عصبی انطباق تصادفی برای سیستم های تاخیر غیرخطی تصادفی متصل شده با محرک اشباع نامتقارن و محدودیت های خروجی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
This paper investigates the problem of decentralized adaptive backstepping control for a class of large-scale stochastic nonlinear time-delay systems with asymmetric saturation actuators and output constraints. Firstly, the Gaussian error function is employed to represent a continuous differentiable asymmetric saturation nonlinearity, and barrier Lyapunov functions are designed to ensure that the output parameters are restricted. Secondly, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. At last, based on Lyapunov stability theory, a decentralized adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters. It is shown that the designed controller can ensure that all the closed-loop signals are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of the origin. Two examples are provided to show the effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 355, Issue 1, January 2018, Pages 54-80
Journal: Journal of the Franklin Institute - Volume 355, Issue 1, January 2018, Pages 54-80
نویسندگان
Wenjie Si, Xunde Dong, Feifei Yang,