کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6953004 1451802 2018 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Decentralized adaptive neural control for interconnected stochastic nonlinear delay-time systems with asymmetric saturation actuators and output constraints
ترجمه فارسی عنوان
کنترل عصبی انطباق تصادفی برای سیستم های تاخیر غیرخطی تصادفی متصل شده با محرک اشباع نامتقارن و محدودیت های خروجی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
This paper investigates the problem of decentralized adaptive backstepping control for a class of large-scale stochastic nonlinear time-delay systems with asymmetric saturation actuators and output constraints. Firstly, the Gaussian error function is employed to represent a continuous differentiable asymmetric saturation nonlinearity, and barrier Lyapunov functions are designed to ensure that the output parameters are restricted. Secondly, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. At last, based on Lyapunov stability theory, a decentralized adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters. It is shown that the designed controller can ensure that all the closed-loop signals are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of the origin. Two examples are provided to show the effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 355, Issue 1, January 2018, Pages 54-80
نویسندگان
, , ,