کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6953138 | 1451803 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel weight function-based robust iterative learning identification method for discrete Box-Jenkins models with Student's t-distribution noises
ترجمه فارسی عنوان
روش جدید شناسایی یادگیری تکراری مبتنی بر تابع وزن برای مدل های گسسته جعبه جینکینز با صدای توزیع دانش آموزان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In the engineering areas, the impulsive disturbances widely exist due to the presence of outliers. The current identification theories based on Gaussian assumptions cannot meet the needs. In the view of above situations, a weight function-based iterative learning identification method is firstly proposed for discrete Box-Jenkins models, and the robust parameter estimation is achieved under Student's t noises. Firstly, according to robust estimation theories, the characteristic weight function is designed for residuals and measurement outputs. This results in the reduced impacts of outliers. Secondly, the effective weights, derived from the robust M-estimator, are applied into the iterative least squares procedure. Thus, the each iteration process is similar to the weighted least squares algorithm. From continuous learning of the estimated residuals, the proposed method realizes an effective fusion of robust estimation and optimization techniques. Finally, the simulation examples verify the theoretical findings.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 354, Issue 18, December 2017, Pages 8645-8658
Journal: Journal of the Franklin Institute - Volume 354, Issue 18, December 2017, Pages 8645-8658
نویسندگان
Wang Zhu, Luo Xionglin,