کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6953412 | 1451820 | 2019 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An explicit method for simulating non-Gaussian and non-stationary stochastic processes by Karhunen-Loève and polynomial chaos expansion
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A new method is developed for explicitly representing and synthesizing non-Gaussian and non-stationary stochastic processes that have been specified by their covariance function and marginal cumulative distribution function. The target process is firstly represented in the Karhunen-Loève (K-L) series form, the random coefficients in the K-L series is subsequently decomposed using one-dimensional polynomial chaos (PC) expansion. In this way, the target process is represented in an explicit form, which is particularly well suited for stochastic finite element analysis of structures as well as for general purpose simulation of realizations of these processes. The key feature of the proposed method is that the covariance of the resulting process automatically matches the target covariance, and one only needs to iterate the marginal distribution to match the target one. Three illustrative examples are used to demonstrate the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 115, 15 January 2019, Pages 1-13
Journal: Mechanical Systems and Signal Processing - Volume 115, 15 January 2019, Pages 1-13
نویسندگان
Hongzhe Dai, Zhibao Zheng, Huihuan Ma,