کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6956345 1451868 2015 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery
ترجمه فارسی عنوان
استخراج ویژگی با استفاده از چند ووویته تطبیقی و شاخص تشخیص مصنوعی برای تشخیص خطای روتور ماشین آلات چرخشی
کلمات کلیدی
استخراج ویژگی، تشخیص گسل، چند وویو متناسب شاخص تشخیص مصنوعی، الگوریتم ژنتیک، پارامترهای علائم بدون بعد،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
State identification to diagnose the condition of rotating machinery is often converted to a classification problem of values of non-dimensional symptom parameters (NSPs). To improve the sensitivity of the NSPs to the changes in machine condition, a novel feature extraction method based on adaptive multiwavelets and the synthetic detection index (SDI) is proposed in this paper. Based on the SDI maximization principle, optimal multiwavelets are searched by genetic algorithms (GAs) from an adaptive multiwavelets library and used for extracting fault features from vibration signals. By the optimal multiwavelets, more sensitive NSPs can be extracted. To examine the effectiveness of the optimal multiwavelets, conventional methods are used for comparison study. The obtained NSPs are fed into K-means classifier to diagnose rotor faults. The results show that the proposed method can effectively improve the sensitivity of the NSPs and achieve a higher discrimination rate for rotor fault diagnosis than the conventional methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volumes 52–53, February 2015, Pages 393-415
نویسندگان
, , ,