| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6958036 | 1451936 | 2017 | 12 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Modeling intra- and inter-pair correlation via heterogeneous high-order preserving for cross-modal retrieval
												
											ترجمه فارسی عنوان
													مدلسازی همبستگی درونی و بین دو جفت از طریق نگهداری ناهمگن و مرتبه بالا برای بازیابی متقابل 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												بازیابی متقابل، حفظ نظم ناهمگن بالا، یادگیری همبستگی، هسته،
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 پردازش سیگنال
												
											چکیده انگلیسی
												Cross modal (e.g., text-to-image or image-to-text) retrieval has received great attention with the flushed multi-modal social media data. It is of considerable challenge to stride across the heterogeneous gap between modalities. Existing methods project different modalities into a common space by minimizing the distance within the heterogeneous pairs (intra-pair) of the new latent space. However, the relationship among these multi-modal pairs (inter-pair) are neglected, which are beneficial to eliminate the heterogeneity. In this paper, we propose a novel algorithm based on canonical correlation analysis by considering the high-order relationship among pairs (HCCA) for cross-modal retrieval. Supervised with additional semantic labels and unsupervised without semantic labels are simultaneously considered by treating the intra- and inter-pair correlation discriminatively. Moreover, kernel tricks are also performed on HCCA to learn a non-linear projection, termed HKCCA. Extensive experiments conducted on three public datasets demonstrate the superiority of the proposed methods compared with the state-of-the-art approaches in cross modal retrieval.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 131, February 2017, Pages 249-260
											Journal: Signal Processing - Volume 131, February 2017, Pages 249-260
نویسندگان
												Leiquan Wang, Weichen Sun, Zhicheng Zhao, Fei Su, 
											