کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
699360 | 890759 | 2008 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Model identification and error covariance matrix estimation from noisy data using PCA
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Principal components analysis (PCA) is increasingly being used for reducing the dimensionality of multivariate data, process monitoring, model identification, and fault diagnosis. However, in the mode that PCA is currently used, it can be statistically justified only if measurement errors in different variables are assumed to be i.i.d. In this paper, an iterative algorithm for model identification using PCA is developed for the case when measurement errors in different variables are unequal and are correlated. The proposed approach not only gives accurate estimates of both the model and error covariance matrix, but also provides answers to the two important issues of data scaling and model order determination.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Control Engineering Practice - Volume 16, Issue 1, January 2008, Pages 146–155
Journal: Control Engineering Practice - Volume 16, Issue 1, January 2008, Pages 146–155
نویسندگان
Shankar Narasimhan, Sirish L. Shah,