کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
699552 890776 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Least-Squares Support Vector Machines for the identification of Wiener–Hammerstein systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی هوافضا
پیش نمایش صفحه اول مقاله
Least-Squares Support Vector Machines for the identification of Wiener–Hammerstein systems
چکیده انگلیسی

This paper considers the identification of Wiener–Hammerstein systems using Least-Squares Support Vector Machines based models. The power of fully black-box NARX-type models is evaluated and compared with models incorporating information about the structure of the systems. For the NARX models it is shown how to extend the kernel-based estimator to large data sets. For the structured model the emphasis is on preserving the convexity of the estimation problem through a suitable relaxation of the original problem. To develop an empirical understanding of the implications of the different model design choices, all considered models are compared on an artificial system under a number of different experimental conditions. The obtained results are then validated on the Wiener–Hammerstein benchmark data set and the final models are presented. It is illustrated that black-box models are a suitable technique for the identification of Wiener–Hammerstein systems. The incorporation of structural information results in significant improvements in modeling performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Control Engineering Practice - Volume 20, Issue 11, November 2012, Pages 1165–1174
نویسندگان
, , , , , ,